A note on the rings with flat injective hulls

Fahimeh Khosh-Ahang Ghasr

November 12, 2015

Table of contents

- 1 Preliminaries.
- 2 Flat cover and injective envelope.
- 3 Rings with flat injective envelopes.

Let R be a ring and \mathcal{F} be the class of all flat R-modules. Then for an R-module M, an R-homomorphism $\varphi: F \to M$, where $F \in \mathcal{F}$ is called a flat cover of M if

Let R be a ring and $\mathcal F$ be the class of all flat R-modules. Then for an R-module M, an R-homomorphism $\varphi: F \to M$, where $F \in \mathcal F$ is called a flat cover of M if

• for each $F' \in \mathcal{F}$ and $\psi : F' \to M$, there is a homomorphism $\tau : F' \to F$ such that $\varphi o \tau = \psi$, and

Let R be a ring and \mathcal{F} be the class of all flat R-modules. Then for an R-module M, an R-homomorphism $\varphi: F \to M$, where $F \in \mathcal{F}$ is called a flat cover of M if

- for each $F' \in \mathcal{F}$ and $\psi : F' \to M$, there is a homomorphism $\tau : F' \to F$ such that $\varphi o \tau = \psi$, and
- ② if $\tau: F \to F$ is a homomorphism such that $\varphi o \tau = \varphi$, then τ is an automorphism.

Let R be a ring and \mathcal{F} be the class of all flat R-modules. Then for an R-module M, an R-homomorphism $\varphi: F \to M$, where $F \in \mathcal{F}$ is called a flat cover of M if

- for each $F' \in \mathcal{F}$ and $\psi : F' \to M$, there is a homomorphism $\tau : F' \to F$ such that $\varphi o \tau = \psi$, and
- ② if $\tau : F \to F$ is a homomorphism such that $\varphi o \tau = \varphi$, then τ is an automorphism.

We briefly say that F is the flat cover of M and denote it by $\mathcal{F}(M)$.

Let R be a ring and $\mathcal E$ be the class of all injective R-modules. Then for an R-module M, an R-homomorphism $\varphi:M\to E$, where $E\in\mathcal E$ is called an injective envelope of M if

Let R be a ring and $\mathcal E$ be the class of all injective R-modules. Then for an R-module M, an R-homomorphism $\varphi:M\to E$, where $E\in\mathcal E$ is called an injective envelope of M if

• for each $E' \in \mathcal{E}$ and $\psi : M \to E'$, there is a homomorphism $\tau : E \to E'$ such that $\tau \circ \varphi = \psi$, and

Let R be a ring and $\mathcal E$ be the class of all injective R-modules. Then for an R-module M, an R-homomorphism $\varphi:M\to E$, where $E\in\mathcal E$ is called an injective envelope of M if

- for each $E' \in \mathcal{E}$ and $\psi : M \to E'$, there is a homomorphism $\tau : E \to E'$ such that $\tau \circ \varphi = \psi$, and
- ② if $\tau: E \to E$ is a homomorphism such that $\tau o \varphi = \varphi$, then τ is an automorphism.

Let R be a ring and $\mathcal E$ be the class of all injective R-modules. Then for an R-module M, an R-homomorphism $\varphi:M\to E$, where $E\in\mathcal E$ is called an injective envelope of M if

- for each $E' \in \mathcal{E}$ and $\psi : M \to E'$, there is a homomorphism $\tau : E \to E'$ such that $\tau \circ \varphi = \psi$, and
- ② if $\tau: E \to E$ is a homomorphism such that $\tau o \varphi = \varphi$, then τ is an automorphism.

We briefly say that E is the injective envelope of M and denote it by $\mathcal{E}(M)$.

• A module M is Gorenstein flat if there is an exact sequence

$$\cdots \to F^{-2} \to F^{-1} \to F^0 \to F^1 \to F^2 \to \cdots$$

of flat modules such that $M = ker(F^0 \to F^1)$ and such that $E \otimes_R$ — leaves the sequence exact when E is injective.

• A module M is Gorenstein flat if there is an exact sequence

$$\cdots \to F^{-2} \to F^{-1} \to F^0 \to F^1 \to F^2 \to \cdots$$

of flat modules such that $M = ker(F^0 \to F^1)$ and such that $E \otimes_R -$ leaves the sequence exact when E is injective.

• The Gorenstein flat dimension of M is denoted by Gfd(M) and defined as

$$Gfd(M) = \inf\{n | \text{there exists an exact sequence} \}$$

$$0 \to G_n \to \cdots \to G_0 \to M \to 0$$
 s.th. $G_i s$ are Gorenstein flat}.

Let R be a ring and let \mathcal{GF} be the class of all Gorenstein flat R-modules. Then for an R-module M, a morphism $\varphi: G \to M$, where $G \in \mathcal{GF}$ is called a Gorenstein flat cover of M if

Let R be a ring and let \mathcal{GF} be the class of all Gorenstein flat R-modules. Then for an R-module M, a morphism $\varphi: G \to M$, where $G \in \mathcal{GF}$ is called a Gorenstein flat cover of M if

1 for each $G' \in \mathcal{GF}$ and $\psi : G' \to M$, there is a homomorphism $\tau : G' \to G$ such that $\varphi o \tau = \psi$, and

Let R be a ring and let \mathcal{GF} be the class of all Gorenstein flat R-modules. Then for an R-module M, a morphism $\varphi: G \to M$, where $G \in \mathcal{GF}$ is called a Gorenstein flat cover of M if

- for each $G' \in \mathcal{GF}$ and $\psi : G' \to M$, there is a homomorphism $\tau : G' \to G$ such that $\varphi o \tau = \psi$, and
- ② if $\tau:G\to G$ is a homomorphism such that $\varphi o \tau = \varphi$, then τ is an automorphism.

Let R be a ring and let \mathcal{GF} be the class of all Gorenstein flat R-modules. Then for an R-module M, a morphism $\varphi: G \to M$, where $G \in \mathcal{GF}$ is called a Gorenstein flat cover of M if

- **1** for each $G' \in \mathcal{GF}$ and $\psi : G' \to M$, there is a homomorphism $\tau : G' \to G$ such that $\varphi o \tau = \psi$, and
- ② if $\tau:G\to G$ is a homomorphism such that $\varphi o \tau = \varphi$, then τ is an automorphism.

We briefly say that G is the Gorenstein flat cover of M and denote it by $\mathcal{GF}(M)$.

A module *M* is Gorenstein injective if there is an exact sequence

$$\cdots \rightarrow E^{-2} \rightarrow E^{-1} \rightarrow E^0 \rightarrow E^1 \rightarrow E^2 \rightarrow \cdots$$

of injective modules such that $M = ker(E^0 \to E^1)$ and such that $\operatorname{Hom}_R(E, -)$ leaves the sequence exact when E is injective.

Note that the existence of a flat cover, an injective envelope and a Gorenstein flat cover for any module over any associative ring has been proved.

• A module M is called cotorsion if $\operatorname{Ext}^1_R(F, M) = 0$ for any flat module F.

- A module M is called cotorsion if $\operatorname{Ext}^1_R(F,M)=0$ for any flat module F.
- A module M is called torsion free if $Tor_1^R(F, M) = 0$ for any flat module F.

- A module M is called cotorsion if $\operatorname{Ext}^1_R(F, M) = 0$ for any flat module F.
- A module M is called torsion free if $Tor_1^R(F, M) = 0$ for any flat module F.
- A module M is called strongly cotorsion if $\operatorname{Ext}^1_R(X, M) = 0$ for any module X of finite flat dimension.

- A module M is called cotorsion if $\operatorname{Ext}^1_R(F, M) = 0$ for any flat module F.
- A module M is called torsion free if $Tor_1^R(F, M) = 0$ for any flat module F.
- A module M is called strongly cotorsion if $\operatorname{Ext}^1_R(X, M) = 0$ for any module X of finite flat dimension.
- A module M is called strongly torsion free if $\operatorname{Tor}_1^R(X,M)=0$ for any module X of finite flat dimension.

Let R be a ring and n a positive integer.

• A module M is called n-cotorsion if $\operatorname{Ext}^1_R(X, M) = 0$ for any R-module X with flat dimension at most n.

- A module M is called n-cotorsion if $\operatorname{Ext}^1_R(X,M)=0$ for any R-module X with flat dimension at most n.
- A module N is called n-torsionfree if $Tor_1^R(N,X) = 0$ for any R-module X with flat dimension at most n.

- A module M is called n-cotorsion if $\operatorname{Ext}^1_R(X,M)=0$ for any R-module X with flat dimension at most n.
- A module N is called n-torsionfree if $Tor_1^R(N,X) = 0$ for any R-module X with flat dimension at most n.
- A module M is called n-Gorenstein cotorsion if
 Ext¹_R(X, M) = 0 for any R-module X with Gorenstein flat
 dimension at most n.

- A module M is called n-cotorsion if $\operatorname{Ext}^1_R(X,M)=0$ for any R-module X with flat dimension at most n.
- A module N is called n-torsionfree if $Tor_1^R(N,X) = 0$ for any R-module X with flat dimension at most n.
- A module M is called n-Gorenstein cotorsion if
 Ext¹_R(X, M) = 0 for any R-module X with Gorenstein flat
 dimension at most n.
- A module M is called strongly Gorenstein cotorsion if it is n-Gorenstein cotorsion for all n.

- A module M is called n-cotorsion if $\operatorname{Ext}^1_R(X,M)=0$ for any R-module X with flat dimension at most n.
- A module N is called n-torsionfree if $Tor_1^R(N,X) = 0$ for any R-module X with flat dimension at most n.
- A module M is called n-Gorenstein cotorsion if
 Ext¹_R(X, M) = 0 for any R-module X with Gorenstein flat
 dimension at most n.
- A module M is called strongly Gorenstein cotorsion if it is n-Gorenstein cotorsion for all n.
- A module N is called n-Gorenstein torsionfree if $\operatorname{Tor}_1^R(N,X)=0$ for any R-module X with Gorenstein flat dimension at most n.

- A module M is called n-cotorsion if $\operatorname{Ext}^1_R(X,M)=0$ for any R-module X with flat dimension at most n.
- A module N is called n-torsionfree if $Tor_1^R(N, X) = 0$ for any R-module X with flat dimension at most n.
- A module M is called n-Gorenstein cotorsion if
 Ext¹_R(X, M) = 0 for any R-module X with Gorenstein flat
 dimension at most n.
- A module M is called strongly Gorenstein cotorsion if it is n-Gorenstein cotorsion for all n.
- A module N is called n-Gorenstein torsionfree if $\operatorname{Tor}_1^R(N,X)=0$ for any R-module X with Gorenstein flat dimension at most n.
- A module N is called strongly Gorenstein torsionfree if it is n-Gorenstein torsionfree for all n.

• $\{1\text{-cotorsion modules}\} \supseteq \{2\text{-cotorsion modules}\} \supseteq \cdots \supseteq \{\text{strongly cotorsion modules}\}$

- $\{1\text{-cotorsion modules}\} \supseteq \{2\text{-cotorsion modules}\} \supseteq \cdots \supseteq \{\text{strongly cotorsion modules}\}$
- $\{1\text{-torsionfree modules}\} \supseteq \{2\text{-torsionfree modules}\} \supseteq \cdots \supseteq \{\text{strongly torsionfree modules}\}$

- $\{1\text{-cotorsion modules}\} \supseteq \{2\text{-cotorsion modules}\} \supseteq \cdots \supseteq \{\text{strongly cotorsion modules}\}$
- $\{1\text{-torsionfree modules}\} \supseteq \{2\text{-torsionfree modules}\} \supseteq \cdots \supseteq \{\text{strongly torsionfree modules}\}$
- {1-Gorenstein cotorsion modules} ⊇ {2-Gorenstein cotorsion modules} ⊇ · · · ⊇ {strongly Gorenstein cotorsion modules}.

- $\{1\text{-cotorsion modules}\} \supseteq \{2\text{-cotorsion modules}\} \supseteq \cdots \supseteq \{\text{strongly cotorsion modules}\}$
- $\{1\text{-torsionfree modules}\} \supseteq \{2\text{-torsionfree modules}\} \supseteq \cdots \supseteq \{\text{strongly torsionfree modules}\}$
- {1-Gorenstein cotorsion modules} ⊇ {2-Gorenstein cotorsion modules} ⊇ · · · ⊇ {strongly Gorenstein cotorsion modules}.
- {1-Gorenstein torsionfree modules} \supseteq {2-Gorenstein torsionfree modules} $\supseteq \cdots \supseteq$ {strongly Gorenstein torsionfree modules}.

Theorem [Enochs, 1984].

Every flat module F can be uniquely written in the form

$$F=\prod T_{\mathfrak{p}},$$

where T_p is a completion of a free R_p -module with respect to p-adic topology.

A prime ideal $\mathfrak p$ of R is said to be a coassociated prime of M if there exists an Artinian homomorphic image L of M with $\mathfrak p=0:_R L$. The set of all coassociated prime ideals of M is denoted by $\operatorname{Coass}(M)$.

Proposition.

Let F be a flat R-module and E be an injective R-module, where R is a commutative ring with non-zero identity.

- The following conditions are equivalent.

 - $\mathcal{F}(\mathcal{E}(F)) = \mathcal{E}(F).$
 - **3** $\mathcal{F}(\mathcal{E}(F))$ is injective.

Proposition.

Let F be a flat R-module and E be an injective R-module, where R is a commutative ring with non-zero identity.

- The following conditions are equivalent.

 - $\mathcal{F}(\mathcal{E}(F)) = \mathcal{E}(F).$
 - **3** $\mathcal{F}(\mathcal{E}(F))$ is injective.
- The following conditions are equivalent.
 - **1** $\mathcal{F}(E)$ is injective.

 - $\mathcal{E}(\mathcal{F}(E))$ is flat.

• A flat module over a Noetherian ring *R* is injective if and only if it is Gorenstein injective.

- A flat module over a Noetherian ring *R* is injective if and only if it is Gorenstein injective.
- An injective module over a commutative ring *R* is flat if and only if it is Gorenstein flat.

Assume that for all injective R-modules E and E' such that $\mathrm{Ass}(E)\subseteq\mathrm{Ass}(R)$, the R-module $Hom_R(E,E')$ is injective. Then

• $\mathcal{F}(\mathcal{E}(R))$ is injective; and

Assume that for all injective R-modules E and E' such that $\mathrm{Ass}(E)\subseteq\mathrm{Ass}(R)$, the R-module $Hom_R(E,E')$ is injective. Then

- $\mathcal{F}(\mathcal{E}(R))$ is injective; and
- $R_{\mathfrak{p}}$ is a Gorenstein ring of Krull dimension 0 for all $\mathfrak{p} \in \mathrm{Ass}(R)$.

• For each injective R-module E we have

$$\mathrm{id}_R(\mathcal{F}(E)) \leq \mathrm{fd}_R(\mathcal{E}(R)).$$

• For each injective R-module E we have

$$\operatorname{id}_R(\mathcal{F}(E)) \leq \operatorname{fd}_R(\mathcal{E}(R)).$$

• For each R-module N, we have

$$\operatorname{id}_R(\mathcal{F}(D_R(N))) \leq \operatorname{fd}_R(\mathcal{E}(N)).$$

• For each injective R-module E we have

$$\operatorname{id}_R(\mathcal{F}(E)) \leq \operatorname{fd}_R(\mathcal{E}(R)).$$

• For each R-module N, we have

$$\operatorname{id}_R(\mathcal{F}(D_R(N))) \leq \operatorname{fd}_R(\mathcal{E}(N)).$$

For each prime ideal p of R,

$$\mathrm{id}_R\widehat{R_\mathfrak{p}}=\mathrm{fd}_R(\mathcal{E}(R/\mathfrak{p})).$$

• It is well-known that every Gorenstein ring has flat injective hull. [Bass, H., 1963].

- It is well-known that every Gorenstein ring has flat injective hull. [Bass, H., 1963].
- There exists an example of a ring with flat injective hull which is not Gorenstein. [Enochs, E. E.; Huang, Z., 2012]

- It is well-known that every Gorenstein ring has flat injective hull. [Bass, H., 1963].
- There exists an example of a ring with flat injective hull which is not Gorenstein. [Enochs, E. E.; Huang, Z., 2012]
- So, the rings with flat injective hulls are generalizations of Gorenstein rings.

Theorem [Cheatham, T.; Enochs, E. E., 1980] and [Enochs, E. E., 2000].

The following are equivalent for a commutative Noetherian ring R.

- **2** $R_{\mathfrak{p}}$ is a Gorenstein ring of Krull dimension 0 for all $\mathfrak{p} \in \mathrm{Ass}(R)$.
- **3** $\mathcal{E}(F)$ is flat for all flat R-modules F.
- **4** $\mathcal{F}(E)$ is injective for all injective *R*-modules *E*.
- **5** $E \otimes E'$ is an injective module for all injective R-modules E and E'.
- **o** $S^{-1}R$ is an injective R-module where S is the set of non-zero divisors of R.

Theorem [Khashyarmanesh, K.; Salarian, Sh., 2003].

The following are equivalent for a commutative Noetherian ring R.

- \circ $\mathcal{E}(R)$ is flat.
- $\mathcal{E}(R)$ has finite flat dimension.
- **3** $\mathcal{F}(M)$ is injective for any strongly cotorsion module M.
- \bullet $\mathcal{E}(M)$ is flat for any strongly torsion free module M.
- If $\mathfrak{p} \in \operatorname{Coass}(E)$ for an injective R-module E, then $\widehat{R_{\mathfrak{p}}}$ is injective.

Theorem [Khashyarmanesh, K.; Salarian, Sh., 2003].

The following are equivalent for a commutative Noetherian ring R.

- \circ $\mathcal{E}(R)$ is flat.
- $\mathcal{E}(R)$ has finite flat dimension.
- **3** $\mathcal{F}(M)$ is injective for any strongly cotorsion module M.
- **4** $\mathcal{E}(M)$ is flat for any strongly torsion free module M.
- **5** $\mathcal{E}(M)$ is flat for any Gorenstein flat module M.
- If $\mathfrak{p} \in \operatorname{Coass}(E)$ for an injective R-module E, then $\widehat{R_{\mathfrak{p}}}$ is injective.
 - If moreover the Krull dimension of R is finite, then the above conditions are equivalent to
- \circ $\mathcal{F}(M)$ is injective for any Gorenstein injective module M.

Theorem [Enochs, E. E.; Huang, Z., 2012].

For a Commutative Noetherian ring R the following conditions are equivalent.

- (1) $\mathcal{E}(R)$ is flat.
- (2) $\mathcal{E}(R)$ is Gorenstein flat.
- (3) $\mathcal{E}(F)$ is Gorenstein flat for any flat R-module F.
- (4) $\mathcal{E}(G)$ is Gorenstein flat for any Gorenstein flat R-module G.
- (5) $\mathcal{GF}(M)$ is injective for any 1-Gorenstein cotorsion R-module M.
- (6) $\mathcal{GF}(M)$ is injective for any strongly Gorenstein cotorsion R-module M.
- (7) $\mathcal{GF}(E)$ is injective for any injective left R-module E.

- (8) $\mathcal{E}(N)$ is flat for any 1-Gorenstein torsionfree R-module N.
- (9) $\mathcal{E}(N)$ is Gorenstein flat for any 1-Gorenstein torsionfree R-module N.
- (10) $\mathcal{E}(N)$ is flat for any strongly Gorenstein torsionfree R-module N.
- (11) $\mathcal{E}(N)$ is Gorenstein flat for any strongly Gorenstein torsionfree R-module N.
- (12) $\mathcal{F}(M)$ is injective for any 1-cotorsion R-module M.
- (13) $\mathcal{E}(N)$ is flat for any 1-torsionfree R-module N.
- (14) $\mathcal{E}(N)$ is Gorenstein flat for any 1-torsionfree R-module N.
- (15) $\mathcal{E}(N)$ is Gorenstein flat for any strongly torsionfree R-module N.

Theorem.

For a commutative Noetherian ring R, the following conditions are equivalent.

- (1) $\mathcal{E}(R)$ is flat.
- (2) $\mathcal{F}(\mathcal{E}(R))$ is injective.
- (3) $\mathcal{F}(\mathcal{E}(R))$ is Gorenstein injective.
- (4) $\mathcal{E}(R/\mathfrak{p})$ is flat for any associated prime ideal \mathfrak{p} of R.
- (5) $T_{\mathfrak{p}}$ is injective for any coassociated prime ideal \mathfrak{p} of $\mathcal{F}(\mathcal{E}(R))$, where $T_{\mathfrak{p}}$ is the completion of a free $\widehat{R_{\mathfrak{p}}}$ -module.
- (6) $\mathcal{E}(R/\mathfrak{p})$ is Gorenstein flat for any associated prime ideal \mathfrak{p} of R.
- (7) $T_{\mathfrak{p}}$ is Gorenstein injective for any coassociated prime ideal \mathfrak{p} of $\mathcal{F}(\mathcal{E}(R))$.

- (8) $\mathcal{E}(R/\mathfrak{p})$ has finite flat dimension for any associated prime ideal \mathfrak{p} of R.
- (9) $\mathcal{F}(\mathcal{E}(F))$ is injective for all flat R-modules F.
- (10) $\mathcal{E}(\mathcal{F}(E))$ is flat for all injective *R*-modules *E*.
- (11) $\mathcal{F}(\mathcal{E}(F))$ is Gorenstein injective for all flat *R*-modules *F*.
- (12) $\mathcal{E}(\mathcal{F}(E))$ is Gorenstein flat for all injective R-modules E.
- (13) $\mathcal{F}(E)$ is Gorenstein injective for all injective *R*-modules *E*.
- (14) $\mathcal{F}(M)$ is Gorenstein injective for all strongly cotorsion R-modules M.

- (15) $\mathcal{E}(F)$ has finite flat dimension for all flat R-modules F.
- (16) $\mathcal{E}(M)$ is flat for all R-modules M with $\mathrm{Ass}(M) \subseteq \mathrm{Ass}(R)$.
- (17) $\mathcal{E}(M)$ is Gorenstein flat for all R-modules M with $\mathrm{Ass}(M) \subseteq \mathrm{Ass}(R)$.
- (18) $\mathcal{E}(M)$ has finite flat dimension for all R-modules M with $\mathrm{Ass}(M) \subseteq \mathrm{Ass}(R)$.
- (19) $R_{\mathfrak{p}}$ is injective for all coassociated prime ideals \mathfrak{p} of $\mathcal{F}(\mathcal{E}(R))$.
- (20) There is an injective R-module E such that for all $\mathfrak{p} \in \operatorname{Coass}(E)$, $\widehat{R_{\mathfrak{p}}}$ is injective.
- (21) For all injective R-modules E and E' the R-module $E \otimes_R E'$ is injective and flat.
- (22) For all injective R-modules E and E' such that $\operatorname{Ass}(E) \subseteq \operatorname{Ass}(R)$, the R-module $\operatorname{Hom}_R(E,E')$ is injective and flat.

If moreover the Krull dimension of R is finite, the above conditions are equivalent to:

(23) $\mathcal{F}(M)$ is Gorenstein injective for all Gorenstein injective R-modules M.

Also, if every prime ideal in $\mathrm{Ass}(R)$ is a minimal prime ideal of R, then the condition " $\mathcal{E}(R)$ is flat" is equivalent to the following conditions.

- (24) $\mathcal{F}(\mathcal{E}(R))$ has finite injective dimension.
- (25) $T_{\mathfrak{p}}$ has finite injective dimension for any coassociated prime ideal \mathfrak{p} of $\mathcal{F}(\mathcal{E}(R))$.
- (26) $\mathcal{F}(E)$ has finite injective dimension for all injective *R*-modules E.
- (27) Every flat and cotorsion R-module F such that $Coass(F) \subseteq Ass(R)$ is injective.
- (28) Every flat and cotorsion R-module F such that $\operatorname{Coass}(F) \subseteq \operatorname{Ass}(R)$ is Gorenstein injective.
- (29) $R_{\mathfrak{p}}$ is Gorenstein for all coassociated prime ideals \mathfrak{p} of $\mathcal{F}(\mathcal{E}(R))$.

Preliminaries. Flat cover and injective envelope. Rings with flat injective envelopes.

Thanks for your patience.